Add like
Add dislike
Add to saved papers

Regulatory mechanism of CCN2 production by serotonin (5-HT) via 5-HT2A and 5-HT2B receptors in chondrocytes.

Serotonin (5-hydroxytryptamine: 5-HT) is recognized as a neurotransmitter in the central nerve system and as a regulator of systemic blood pressure in the peripheral tissues. Recently, it was reported that 5-HT2 receptors (5-HT2Rs) were expressed in cartilage tissues lacking both vessels and neurons, suggesting possible novel functions of 5-HT during cartilage development and regeneration. Our previous data indicated that CCN family protein 2/connective tissue growth factor (CCN2/CTGF) plays a central role in cartilage development and regeneration. Therefore, the aim of this study was to investigate the effect of 5-HT on the production of CCN2 in chondrocytes. Firstly, we showed that the mRNAs of 5-HT2R subtypes 5-HT2AR and 5-HT2BR, were expressed in a human chondrocytic cell line, HCS-2/8; however, 5-HT2CR mRNA was not detected. In addition, exogenously added 5-HT did not affect the 5-HT2AR and 5-HT2BR expressions. Next, we demonstrated that CCN2 production was increased by treatment with a 5-HT2AR agonist and the combination of 5-HT and 5-HT2BR antagonist. In contrast, treatment with a 5-HT2BR agonist and the combination of 5-HT and 5-HT2AR antagonist decreased CCN2 production. Furthermore, we showed that phosphorylation of Akt and p38 MAPK were increased by treatment with 5-HT2AR agonist, and that phosphorylation of PKCε, PKCζ, ERK1/2 and JNK were increased by treatment with 5-HT2BR agonist. Finally, we found that 5-HT2AR was localized in the growth plate, whereas 5-HT2BR was localized in the articular cartilage. These findings suggest that 5-HT promotes CCN2 production through the 5-HT2AR in growth plates, and that it represses CCN2 production through the 5-HT2BR in articular cartilage for harmonized development of long bones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app