Add like
Add dislike
Add to saved papers

Albumin-coordinated assembly of clearable platinum nanodots for photo-induced cancer theranostics.

Biomaterials 2018 Februrary
Photoactive noble metal nanoparticles are of increasing importance toward personalized cancer therapy in the field of precision nanomedicine. A critical challenge remains in the exploration of clinically potential noble metal nanoparticles for highly efficient cancer theranostics. Here, we introduce albumin-coordinated assembly of clearable Pt nanodots (Pt-NDs) with monodisperse nanostructure as high-performance theranostic agents for imaging-guided photothermal tumor ablation. We precisely manipulate the reduction and growth of tetravalent Pt ions into ultrasmall nanodots through albumin-directed growth kinetics, thereby leading to the synthesis of monodisperse 6.7 nm Pt-NDs with albumin molecules as the corona. Pt-NDs exhibit the surface plasmon resonance at 225 nm with enhanced near-infrared (NIR) absorbance, ideal resistance to photo-bleaching, distinct photoacoustic and X-ray signals, as well as remarkable photothermal effect through non-radiative relaxation under NIR light irradiation. In particular, Pt-NDs possess preferable tumor accumulation, and effective in vivo excretory capability. Thus, these nanodots promote preferable in vivo microscopic photoacoustics and spatially anatomic CT imaging with enhanced contrast, as well as potent hyperthermia-mediated tumor ablation. These findings represent a facile and general approach to fabricate high-performance noble metal nanostructures with clinical potential for cancer theranostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app