Add like
Add dislike
Add to saved papers

Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System.

Sensors 2017 November 17
Baker's yeast ( Saccharomyces cerevisiae ) represents a very popular single-celled eukaryotic model organism which has been studied extensively by various methods and whose genome has been completely sequenced. It was also among the first living organisms that were manipulated by optical tweezers and it is currently a frequent subject of optical micromanipulation experiments. We built a microfluidic system for optical trapping experiments with individual cells and used it for the assessment of cell tolerance to phototoxic stress. Using optical tweezers with the wavelength of 1064 nm, we trapped individual Saccharomyces cerevisiae cells for 15 min and, subsequently, observed their stress response in specially designed microfluidic chambers over time periods of several hours by time-lapse video-microscopy. We determined the time between successive bud formations after the exposure to the trapping light, took account of damaged cells, and calculated the population doubling period and cell areas for increasing trapping power at a constant trapping time. Our approach represents an attractive, versatile microfluidic platform for quantitative optical trapping experiments with living cells. We demonstrate its application potential by assessing the limits for safe, non-invasive optical trapping of Saccharomyces cerevisiae with infrared laser light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app