Add like
Add dislike
Add to saved papers

TWEAK/Fn14 interaction induces proliferation and migration in human airway smooth muscle cells via activating the NF-κB pathway.

Asthma, an increasingly common chronic disease among children, are characterized by airway remodeling, which is partly attributed to the proliferation and migration of airway smooth muscle cell (ASMC). The purpose of the present study was to investigate potential roles and mechanisms of the tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible molecule 14 (Fn14) axis on cell proliferation and migration in HASMCs. Compared to HASMCs from non-asthmatic patients, those from asthmatic patients showed elevated expression levels of both Fn14 and TWEAK. Additionally, similar to the response triggered by platelet-derived growth factor-BB, stimulation with recombinant TWEAK strongly induced cell proliferation and migration in HASMCs. However, depletion of Fn14 remarkably abrogated the enhancement of TWEAK on the cell proliferation and migration of HASMCs. Furthermore, treatment with TWEAK led to the activation of NF-κB. This effect was eliminated by silencing Fn14, indicating that TWEAK-induced NF-κB signaling was mediated via Fn14. Moreover, the TWEAK/Fn14 interaction promoted cell proliferation and migration. These effects were blocked by NF-κB inhibitor SN50, which suggest that the TWEAK/Fn14 signaling system partially depends on NF-κB activity. Collectively, we demonstrated that the TWEAK/Fn14 axis accelerated HASMC cell proliferation and migration by activating the NF-κB pathway, thereby exacerbating airway remodeling in asthma. Altogether, these findings indicate a novel role for the TWEAK/Fn14/NF-κB pathway as a potent option for limiting airway remodeling in asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app