Add like
Add dislike
Add to saved papers

The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis.

Engineering artificial extracellular matrices, based on the biomimicry of the spatial distribution of proteins and growth factors within their native microenvironment, is of great importance for understanding mechanisms of bone tissue regeneration. Herein, photolithography is used to decorate glass surfaces with subcellular patterns of RGD and BMP-2 ligands; two mimetic peptides recognized to be involved in stem cells osteogenesis. The biological relevance of well-defined RGD and BMP-2 patterned surfaces is evaluated by investigating the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts, in the absence of induction media. The extent of hMSCs differentiation is revealed to be dependent on both the pattern shape and the ligand type. Indeed, the spatial patterning of BMP-2, but not RGD peptide, significantly enhances the extent of hMSCs differentiation, suggesting that geometric cues guide stem cells specification into specialized cells in a ligand type dependent manner. Such cell culture models provide an interesting tool to investigate how stem cells perceive and respond to their microenvironment and may contribute to the development of next-generation biomaterials capable of producing clinically relevant volume of bone tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 959-970, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app