Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

Polyglucosan myopathy and functional characterization of a novel GYG1 mutation.

OBJECTIVES: Disorders of glycogen metabolism include rare hereditary muscle glycogen storage diseases with polyglucosan, which are characterized by storage of abnormally structured glycogen in muscle in addition to exercise intolerance or muscle weakness. In this study, we investigated the etiology and pathogenesis of a late-onset myopathy associated with glycogenin-1 deficiency.

MATERIALS AND METHODS: A family with two affected siblings, 64- and 66-year-olds, was studied. Clinical examination and whole-body MRI revealed weakness and wasting in the hip girdle and proximal leg muscles affecting ambulation in the brother. The sister had weakness and atrophy of hands and slight foot dorsiflexion difficulties. Muscle biopsy and whole-exome sequencing were performed in both cases to identify and characterize the pathogenesis including the functional effects of identified mutations.

RESULTS: Both siblings demonstrated storage of glycogen that was partly resistant to alpha-amylase digestion. Both were heterozygous for two mutations in GYG1, one truncating 1-base deletion (c.484delG; p.Asp163Thrfs*5) and one novel missense mutation (c.403G>A; p.Gly135Arg). The mutations caused reduced expression of glycogenin-1 protein, and the missense mutation abolished the enzymatic function as analyzed by an in vitro autoglucosylation assay.

CONCLUSION: We present functional evidence for the pathogenicity of a novel GYG1 missense mutation located in the substrate binding domain. Our results also demonstrate that glycogenin-1 deficiency may present with highly variable distribution of weakness and wasting also in the same family.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app