Add like
Add dislike
Add to saved papers

Influences of graphene oxide on biofilm formation of gram-negative and gram-positive bacteria.

In this study, we evaluated the influences of graphene oxide (GO) on biofilm formation. Escherichia coli MG1655 and Bacillus subtilis 168 were used as models for Gram-negative and Gram-positive bacteria. The growth profiles and viability assays indicated that GO exhibited a high antibacterial activity, of which the negative effects on bacteria growth raised with the increasing GO concentration. The antibacterial activity of GO was mainly attributed to the membrane stress and ROS-independent oxidative stress. Moreover, it was worthy to note that the biofilm formation was enhanced in the presence of GO at low dosage whereas inhibited in the high-concentration GO environment. These results could be explained by the roles of the dead cells, which were inactivated by GO. When the concentration of GO was limited, only a part of the cells would be inactivated, which may then serve as a protection barrier as well as the necessary nutrient to the remaining living cells for the formation of biofilm. In contrast, with a sufficient presence of GO, almost all cells can be inactivated completely and thus the formation of biofilm could no longer be triggered. Overall, the present work provides significant new insights on the influence of carbon nanomaterials towards biofilm formation, which has far-reaching implications in the field of biofouling and membrane bioreactor. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app