Journal Article
Review
Add like
Add dislike
Add to saved papers

Deciphering the molecular events during arsenic induced transcription signal cascade activation in cellular milieu.

Anthropogenic sources of arsenic poses and creates unintentional toxico-pathological concerns to humans in many parts of the world. The understanding of toxicity of this metalloid, which shares properties of both metal and non-metal is principally structured on speciation types and holy grail of toxicity prevention. Visible symptoms of arsenic toxicity include nausea, vomiting, diarrhea and abdominal pain. In this review, we focused on the dermal cell stress caused by trivalent arsenic trioxide and pentavalent arsanilic acid. Deciphering the molecular events involved during arsenic toxicity and signaling cascade interaction is key in arsenicosis prevention. FoxO1 and FoxO2 transcription factors, members of the Forkhead/Fox family, play important roles in this aspect. Like Foxo family proteins, ATM/CHK signaling junction also plays important role in DNA nuclear factor guided cellular development. This review will summarize and discuss current knowledge about the interplay of these pathways in arsenic induced dermal pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app