JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds.

Many high-altitude vertebrates have evolved increased capacities in their oxygen transport cascade (ventilation, pulmonary diffusion, circulation and tissue diffusion), enhancing oxygen transfer from the atmosphere to mitochondria. However, the extent of interspecies variation in the control processes that dictate hypoxia responses remains largely unknown. We compared the metabolic, cardiovascular and respiratory responses to progressive decreases in inspired oxygen levels of bar-headed geese ( Anser indicus ), birds that biannually migrate across the Himalayan mountains, with those of Andean geese ( Chloephaga melanoptera ) and crested ducks ( Lophonetta specularioides ), lifelong residents of the high Andes. We show that Andean geese and crested ducks have evolved fundamentally different mechanisms for maintaining oxygen supply during low oxygen (hypoxia) from those of bar-headed geese. Bar-headed geese respond to hypoxia with robust increases in ventilation and heart rate, whereas Andean species increase lung oxygen extraction and cardiac stroke volume. We propose that transient high-altitude performance has favoured the evolution of robust convective oxygen transport recruitment in hypoxia, whereas life-long high-altitude residency has favoured the evolution of structural enhancements to the lungs and heart that increase lung diffusion and stroke volume.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app