JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Autoantibodies against HSF1 and CCDC155 as Biomarkers of Early-Stage, High-Grade Serous Ovarian Cancer.

Background: Tumor-directed circulating autoantibodies (AAb) are a well-established feature of many solid tumor types, and are often observed prior to clinical disease manifestation. As such, they may provide a good indicator of early disease development. We have conducted a pilot study to identify novel AAbs as markers of early-stage HGSOCs. Methods: A rare cohort of patients with early (FIGO stage Ia-c) HGSOCs for IgG, IgA, and IgM-mediated AAb reactivity using high-content protein arrays (containing 9,184 individual proteins). AAb reactivity against selected antigens was validated by ELISA in a second, independent cohort of individual patients. Results: A total of 184 antigens were differentially detected in early-stage HGSOC patients compared with all other patient groups assessed. Among the six most highly detected "early-stage" antigens, anti-IgA AAbs against HSF1 and anti-IgG AAbs CCDC155 (KASH5; nesprin 5) were significantly elevated in patients with early-stage malignancy. Receiver operating characteristic (ROC) analysis suggested that AAbs against HSF1 provided better detection of early-stage malignancy than CA125 alone. Combined measurement of anti-HSF1, anti-CCDC155, and CA125 also improved efficacy at higher sensitivity. Conclusions: The combined measurement of anti-HSF1, anti-CCDC155, and CA125 may be useful for early-stage HGSOC detection. Impact: This is the first study to specifically identify AAbs associated with early-stage HGSOC. The presence and high frequency of specific AAbs in early-stage cancer patients warrants a larger scale examination to define their value for early disease detection at primary diagnosis and/or recurrence. Cancer Epidemiol Biomarkers Prev; 27(2); 183-92. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app