Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Homochiral versus Heterochiral Trifluoromethylated Pseudoproline Containing Dipeptides: A Powerful Tool to Switch the Prolyl-Amide Bond Conformation.

The design of constrained peptides is of prime importance in the development of bioactive compounds and for applications in supramolecular chemistry. Due to its nature, the peptide bond undergoes a spontaneous cis-trans isomerism, and the cis isomers are much more difficult to stabilize than the trans forms. By using oxazolidine-based pseudoprolines (ΨPro) substituted by a trifluoromethyl group, we show that the cis peptide bond can be readily switched from 0% to 100% in Xaa-ΨPro dipeptides. Our results prove that changing the configuration of the Cα in Xaa or in ΨPro is sufficient to invert the cis:trans populations while changing the nature of the Xaa side chain finely tuned the conformers ratio. Moreover, a strong correlation is found between the puckering of the oxazolidine ring and the peptide bond conformation. This finding highlights the role of the trifluoromethyl group in the stabilization of the peptide bond geometry. We anticipate that such templates will be very useful to constrain the backbone geometry of longer peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app