Add like
Add dislike
Add to saved papers

Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain.

Pain 2018 Februrary
T lymphocytes play a pivotal role in endogenous regulation of inflammatory visceral pain. The analgesic activity of T lymphocytes is dependent on their production of opioids, a property acquired on antigen activation. Accordingly, we investigated whether an active recruitment of T lymphocytes within inflamed colon mucosa via a local vaccinal strategy may counteract inflammation-induced visceral pain in mice. Mice were immunized against ovalbumin (OVA). One month after immunization, colitis was induced by adding 3% (wt/vol) dextran sulfate sodium into drinking water containing either cognate antigen OVA or control antigen bovine serum albumin for 5 days. Noncolitis OVA-primed mice were used as controls. Visceral sensitivity was then determined by colorectal distension. Oral administration of OVA but not bovine serum albumin significantly reduced dextran sulfate sodium-induced abdominal pain without increasing colitis severity in OVA-primed mice. Analgesia was dependent on local release of enkephalins by effector anti-OVA T lymphocytes infiltrating the inflamed mucosa. The experiments were reproduced with the bacillus Calmette-Guerin vaccine as antigen. Similarly, inflammatory visceral pain was dramatically alleviated in mice vaccinated against bacillus Calmette-Guerin and then locally administered with live Mycobacterium bovis. Together, these results show that the induction of a secondary adaptive immune response against vaccine antigens in inflamed mucosa may constitute a safe noninvasive strategy to relieve from visceral inflammatory pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app