Journal Article
Review
Add like
Add dislike
Add to saved papers

Legacy organochlorine pollutants in glacial watersheds: a review.

Northern Hemisphere alpine glaciers have been identified as a point of concentration and reemergence of legacy organochlorine pollutants (OCPs). In this review, we compile a selection of published literature combining long-range, global atmospheric transport and distribution-based compartmental environmental flux models, as well as data from glacial meltwater, ice core, crevasse and proglacial lake sediment studies. Regional studies of ice and meltwater in alpine glaciers of the northern latitudes show similarities in sample deposition profiles and concentration due to chemical atmospheric residence time, precipitation type and glacier flow rates. In glaciated locations near areas of extensive OCPs use, such as the Swiss and Italian Alps, glacier sample concentrations are higher, while in areas more distant from use, including Arctic nations, OCPs concentrations in glaciers are significantly lower. Our review identifies alpine glaciers co-located with regions characterized by OCPs use as a significant organochlorine pollutant distribution source, secondary in timing and location to direct deposition, with subsequent bioaccumulation and potential human risk impacts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app