Add like
Add dislike
Add to saved papers

Vapor-Assisted Solution Approach for High-Quality Perovskite CH 3 NH 3 PbBr 3 Thin Films for High-Performance Green Light-Emitting Diode Applications.

The vapor-assisted solution method was developed to prepare high-quality organic-inorganic halide perovskite CH3 NH3 PbBr3 (MAPbBr3 ) thin films. We detailedly investigated the effect of evaporation time and temperature of MABr powder on the microstructure, crystallinity, and optical characterizations of MAPbBr3 thin films, and a controllable morphology evolution with varying surface coverage was observed. Temperature-dependent and time-resolved photoluminescence measurements were carried out to investigate the optical transition mechanisms and carrier recombination dynamics of MAPbBr3 thin films. Our results revealed that no structural phase transition occurred within the heating process (10-300 K). In addition to the exciton-related emission, a trapped charge-carrier emission appeared at a critical temperature of 140 K. The corresponding temperature sensitivity coefficient of band gap, exciton binding energy, and optical phonon energy of the MAPbBr3 thin films were extracted from the experimental data. Furthermore, planar perovskite light-emitting diodes (PeLEDs) based on a Al/LiF/TPBi/MAPbBr3 /NiO/ITO structure were fabricated, and a high-purity green emission at ∼532 nm with a low line width (25 nm) was achieved. The devices demonstrated remarkable performances with high luminance (6530 cd/m2 ), current efficiency (8.16 cd/A), external quantum efficiency (4.36%), and power efficiency (4.49 lm/W). This research will provide valuable information for the preparation of high-quality perovskite thin films, facilitating their future applications in novel high-performance PeLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app