Add like
Add dislike
Add to saved papers

Structure-Property Relationships in Cu II -Binding Tetramolecular G-Quadruplex DNA.

A series of artificial metal-base tetrads composed of a CuII cation coordinating to four pyridines, covalently attached to the ends of tetramolecular G-quadruplex DNA strands [LA-D d(G4 )]4 (LA-D =ligand derivatives), was systematically studied. Structurally, the square-planar [Cu(pyridine)4 ] complex behaves analogously to the canonical guanine quartet. Copper coordination to all studied ligand derivatives was found to increase G-quadruplex thermodynamic stability, tolerating a great variety of ligand linker lengths (1-5 atoms) and thus demonstrating the robustness of the chosen ligand design. Only at long linker lengths, the stabilizing effect of copper binding is compensated by the loss of conformational freedom. A previously reported ligand LE with chiral backbone enables incorporation at any oligonucleotide position. We show that ligand chirality distinctly steers CuII -induced G-quadruplex stabilization. 5'-End formation of two metal-base tetrads by tetramolecular G-quadruplex [LE 2 d(G)4 ]4 shows that stabilization in the presence of CuII is not additive. All results are based on UV/Vis thermal denaturation, thermal difference, circular dichroism experiments and molecular dynamics simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app