Add like
Add dislike
Add to saved papers

Laser Thinning and Patterning of MoS 2 with Layer-by-Layer Precision.

Scientific Reports 2017 November 15
The recently discovered novel properties of two dimensional materials largely rely on the layer-critical variation in their electronic structure and lattice symmetry. Achieving layer-by-layer precision patterning is thus crucial for junction fabrications and device engineering, which hitherto poses an unprecedented challenge. Here we demonstrate laser thinning and patterning with layer-by-layer precision in a two dimensional (2D) quantum material MoS2 . Monolayer, bilayer and trilayer of MoS2 films are produced with precise vertical and lateral control, which removes the extruding barrier for fabricating novel three dimensional (3D) devices composed of diverse layers and patterns. By tuning the laser fluence and exposure time we demonstrate producing MoS2 patterns with designed layer numbers. The underlying physics mechanism is identified to be temperature-dependent evaporation of the MoS2 lattice, verified by our measurements and calculations. Our investigation paves way for 3D device fabrication based on 2D layered quantum materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app