Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Long Noncoding RNA NEAT1 , Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/ β -Catenin Pathway by Scaffolding EZH2.

Clinical Cancer Research 2018 Februrary 2
Purpose: Long noncoding RNAs have been implicated in gliomagenesis, but their mechanisms of action are mainly undocumented. Through public glioma mRNA expression data sets, we found that NEAT1 was a potential oncogene. We systematically analyzed the clinical significance and mechanism of NEAT1 in glioblastoma. Experimental Design: Initially, we evaluated whether NEAT1 expression levels could be regulated by EGFR pathway activity. We subsequently evaluated the effect of NEAT1 on the WNT/β-catenin pathway and its target binding gene. The animal model supported the experimental findings. Results: We found that NEAT1 levels were regulated by EGFR pathway activity, which was mediated by STAT3 and NFκB (p65) downstream of the EGFR pathway. Moreover, we found that NEAT1 was critical for glioma cell growth and invasion by increasing β-catenin nuclear transport and downregulating ICAT, GSK3B, and Axin2. Taken together, we found that NEAT1 could bind to EZH2 and mediate the trimethylation of H3K27 in their promoters. NEAT1 depletion also inhibited GBM cell growth and invasion in the intracranial animal model. Conclusions: The EGFR/ NEAT1 /EZH2/β-catenin axis serves as a critical effector of tumorigenesis and progression, suggesting new therapeutic directions in glioblastoma. Clin Cancer Res; 24(3); 684-95. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app