JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptional regulation of acetoacetyl-CoA synthetase by Sp1 in neuroblastoma cells.

Acetoacetyl-CoA synthetase (AACS) is the enzyme responsible for cholesterol and fatty acid synthesis in the cytosol. We have previously shown that AACS has an important role in normal neuronal development and that knockdown of SREBP-2, which orchestrates cholesterol synthesis, resulted in the downregulation of AACS mRNA levels. In this study, we investigated the transcriptional mechanism of AACS in Neuro-2a, neuroblastoma cells. Luciferase assay showed that the minimal core promoter of the mouse AACS gene is located in a region with 110 bps upstream from the transcription start site. Mutagenesis studies showed that the Sp1 binding site was crucial for AACS promoter activity. ChIP assay and DNA affinity precipitation assay showed that Sp1 binds to the Sp1 binding site on the promoter region of AACS. Moreover, overexpression of Sp1 increased AACS mRNA levels. Knockdown of AACS resulted in a decrease in histone deacetylase 9, associated with gene silencing. These results suggest that Sp1 regulates gene expression of AACS in Neuro-2a cells and ketone body utilization affects the balance of histone acetylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app