Add like
Add dislike
Add to saved papers

Microarray analysis of an synthetic α-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson's disease.

Brain Research 2018 January 2
Long non-coding RNAs (lncRNAs) are a new research focus that are reported to influence the pathogenetic process of neurodegenerative disorders. To uncover new disease-associated genes and their relevant mechanisms, we carried out a gene microarray analysis based on a Parkinson's disease (PD) in vitro model induced by α-synuclein oligomers. This cellular model induced by 25 μmol/L α-synuclein oligomers has been confirmed to show the stable, transmissible neurotoxicity of α-synuclein, a typical PD pathological marker. And several differentially expressed lncRNAs and mRNAs were identified in this model, such as G046036, G030771, AC009365.4, RPS14P3, CTB-11I22.1, and G007549. Subsequent ceRNA analysis determined the potential relationships between these lncRNAs and their associated mRNAs and microRNAs. The results of the present study widen our horizon of PD susceptibility genes and provide new pathways towards efficient diagnostic biomarkers and therapeutic targets for PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app