Add like
Add dislike
Add to saved papers

Sonochemical synthesis of Co 2 SnO 4 nanocubes for supercapacitor applications.

In this work, a simple sonochemical route was followed to synthesize cobalt stannate (Co2 SnO4 ) nanocubes using stannous and cobalt chlorides as the precursors in alkaline medium at room temperature. The structure, composition and surface morphology of synthesized Co2 SnO4 nanocubes have been characterized by using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) indicates that the Co2 SnO4 nanocubes are crystalline, single-phase without any impurity phase; the sizes of nanocubes are ∼100 nm. The cyclic voltammetry, galvanostatic charge-discharge cycling test, and electrochemical impedance spectroscopy (EIS) measurements are carried out for the Co2 SnO4 nanocubes shows a specific capacitance 237 F g-1 at 0.5 mA cm-2 current density and in 1 M Na2 SO4 electrolyte. Co2 SnO4 nanocubes exhibit long cycling life with 80% retention of initial capacitance after 2000 cycles and the excellent rate capability at 15 mA cm-2 as much as 70% of that at 0.5 mA cm-2 suggest its potential use for supercapacitor applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app