Add like
Add dislike
Add to saved papers

Morphology-dependent sensing performance of dihydro-tetrazine functionalized MOF toward Al(III).

A pillared MOF, [Zn(OBA)(H2 DPT)0.5 ].DMF (TMU-34), based on dihydro tetrazine functionalized pillar spacer (H2 DPT=3,6-di(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine) and V-shape dicarboxylate linker (H2 OBA=4,4'-oxybis(benzoic acid)) was synthesized by reflux and ultrasonic methods. The effects of sonication time, initial concentration of reagents and sonication power on size and morphology have been optimized. This MOF has been characterized by scanning electron microscopy, FT-IR spectra, X-ray powder diffraction and N2 adsorption at 77K. Bulk and nano samples of TMU-34 have been applied in cation sensing for detection of Al(III) in presence of other cations (Na(I), Mg(II), Sr(II), Al(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), Hg(II),Cr(III), Li(I), Fe(III), K(I)). The results show that nano powder of TMU-34 with uniform separated plate-like morphology (TMU-34-F) has higher detection limit and short response time compared to bulk material. So, in this work we show the application of luminescent metal-organic frameworks synthesized by sonochemistry approach in effective cation detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app