Add like
Add dislike
Add to saved papers

Loop-mediated isothermal amplification using self-avoiding molecular recognition systems and antarctic thermal sensitive uracil-DNA-glycosylase for detection of nucleic acid with prevention of carryover contamination.

Analytica Chimica Acta 2017 December 16
Loop-mediated isothermal amplification (LAMP) is the most popular technique to amplify nucleic acid sequence without the use of temperature cycling. However, LAMP is often confounded by false-positive results, arising from interactions between (hetero-dimer) or within (self-dimerization) primers, off-target hybrids and carryover contaminants. Here, we devised a new LAMP technique that is self-avoiding molecular recognition system (SAMRS) components and antarctic thermal sensitive uracil-DNA-glycosylase (AUDG) enzyme-assisted, termed AUDG-SAMRS-LAMP. Incorporating SAMRS components into 3'-ends of LAMP primers can improve assay's specificity, which completely prevents the non-specific amplification yielding from off-target hybrids and undesired interactions between or within primers. Adding AUDG into reaction mixtures can effectively eliminate the false-positive results arising from carryover contamination, thus the genuine positive reactions are generated from the amplification of target templates. Furthermore, AUDG-SAMRS-LAMP results are confirmed using a new analysis strategy, which is developed for detecting LAMP amplicons by lateral flow biosensor (LFB). Only a single labeled primer is required in the analysis system, thus the false positive results arising from hybridization (the labeled primer and probe, or between two labeled primers) are avoided. Hence, the SAMRS components, AUDG and LFB convert traditional LAMP from a technique suited for the research laboratory into one that has practical value in the field of diagnosis. Human Tuberculosis (TB) is caused by infection with members of Mycobacterium tuberculosis complex (MTC), which are detected by the AUDG-SAMRS-LAMP technique to demonstrate the availability of target analysis. The proof-of-concept method can be reconfigured to detect various nucleic acids by redesigning the specific primers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app