Add like
Add dislike
Add to saved papers

Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubber.

Highly stretchable and durable conductors are significant to the development of wearable devices, robots, human-machine interfaces, and other artificial intelligence products. Although many respectable methods have been reported, it is still a challenge to fabricate stretchable conductors with a large elastic limit, high conductivity, and excellent reliability in rapid, effective, and economic ways. Herein, a facile method is offered to fabricate high-performance stretchable tubular conductors (TCs) based on a macroconfined structure of expanded graphite (EG) in rubber tubing by simply physical packing. The maximum original electrical conductivity of TCs reached a high value of 160.6 S/cm. Meanwhile, TCs showed more insensitive response of conductivity to increasing tensile strain compared to the TCs encapsulated with liquid metal or ionic liquid. The conductivity and effective stretchability of TCs can be adjusted by varying the packing density of EG. A low gauge factor below 3 was reached even under 400% stretching for TCs with a packing density of 1.233 g/cm3 . The excellent resilience and good stability of conductivity of TCs during dynamic stretching-releasing cycles are attributed to the stable and rapid reconstruction of the percolation network of EG particles. The combination of high conductivity, tunable stretchability, and good reliability renders potential applications to TCs, such as highly stretchable interconnects or strain sensors, in human motion detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app