JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Metal/Ion Interactions Induced p-i-n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals.

Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. We report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI3 single crystals with Au/MAPbI3 /Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA+ ) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI3 interface, whereas iodine anions (I- ) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI3 interface due to the formation of MA+ vacancies, and an n-doped region near the Ag/MAPbI3 interface due to formation of I- vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI3 /Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app