Add like
Add dislike
Add to saved papers

Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS 2 and graphene quantum dots.

Talanta 2018 Februrary 2
Developing a novel non-enzyme mimetic in biosensors is of great significance. Here, a synergetic peroxidase-like activity was disclosed for mixed MoS2 quantum dots (MoS2 QDs) and graphene quantum dots (GQDs). The high catalytic effect of this mixture was studied on the chemiluminescence system. It was observed that the simultaneous presence of MoS2 QDs and GQDs had a powerful enhancing effect on the chemiluminescence (CL) emission of rhodamine B (RB)-H2 O2 reaction. MoS2 QDs and GQDs mixture (prepared with a ratio of 3:2) showed a superior catalytic activity when compared to each of the constituents. A linear relationship was acquired between the CL emission intensity and H2 O2 concentration in the range of 1.5-460nmolL-1 . On the other hand, since the enzymatic oxidation of cholesterol leads to the production of H2 O2 ; the offered CL system was examined to detect cholesterol after its oxidation by cholesterol oxidase (ChOx) enzyme. Herein, a further improvement was achieved by MoS2 nanosheets. The MoS2 nanosheets increased the performance of ChOx in cholesterol oxidation process. The obtained results confirmed a highly selective and sensitive determination of cholesterol concentration in a linear dynamic range of 0.08-300µmolL-1 , with a detection limit (3S) of 35nmolL-1 . The developed method was successfully applied for the detection of cholesterol level in human serum samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app