Add like
Add dislike
Add to saved papers

[Metabolomics study of tris(2-chloroethyl) phosphate induced hepaotoxicity and nephrotoxicity in Sprague-Dawley rats].

Objective: To discuss the potential toxic target organ and the toxic effects and mechanisms of tris (2-chloroethyl) phosphate (TCEP) on SD rats. Methods: 40 female SD rats weaning from milk for 21 days, weighted (50±2.3)g were selected as subjects and marked by the weight. They were randomly divided into 4 groups, namely control group, 50 (L), 100 (M) and 250 (H) mg·kg(-1)·d(-1) dose of TCEP group. Each group has 10 rats, and administrated the corresponding dose of drug or vehicle by mouth, quaque die for 60 days. All rats were sacrificed after the last administration. The livers and kidneys were dyed by HE for pathological observation; and the blood samples were collected to analyze the biochemical index. H(1)-Nuclear Magnetic Resonance ((1)H-NMR)-based metabolomics methods coupling with histopathogy examination were used to investigate the toxic effects of TCEP. Results: Inflammatory cell infiltration and hepatic necrosis were observed in the liver of TCEP-treated rats. Inflammatory cells invaded and calcification/ossification foci were also found in renal of TCEP-treated rats and tumor hyperplasia were existed in renal tubule in H group. The level of HDL-C in the L, M and H group were separately (1.7±0.09) , (1.5±0.07) and (1.3±0.1) µmol/L, which were all significantly lower than that of control group ( (1.9±0.2) µmol/L) ( P< 0.05) . The activity of cholinesterase (CHE) in the L, M and H group were separately (918±14.8) , (828±28.6) and (674±36.5) U/L, which were all significantly lower than that of control group ((1056±28.8) µmol/L) ( P< 0.05). Moreover, The level of creatinine (CRE) in the L, M and H group were separately (29.8±4.6) , (28.9±5.3) and (25.8±6.2) µmol/L, which were all significantly lower than that of control group ((30.2±3.9) µmol/L) ( P< 0.05). In the H group, the enzyme activities of alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), alkaline phosphatase (ALP) and the contents of total bilirubin (TBIL), glucose (GLU) and uric acid (UA) were all significantly higher than the results in control group. The results of (1)H-NMR metabolomics showed that the contents of lactate, glycine, high-density lipoprotein, low-density lipoprotein and phosphatidylcholine in blood of rats would decrease by TCEP exposure, while N-acetylglycoprotein, acetate, alanine, glucose, lipids, lipoproteins and fatty acids would increase. Conclusion: TCEP caused disorders in endogenous energy metabolism, leading to the pathological changes of inflammatory cells infiltration and necrosis in liver and kidney, caused enzyme activity changes of ALT, ALP and the content changes of other liver and kidney injury-related markers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app