JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dynamic Stabilization of the Ligand-Metal Interface in Atomically Precise Gold Nanoclusters Au 68 and Au 144 Protected by meta-Mercaptobenzoic Acid.

ACS Nano 2017 December 27
Ligand-stabilized, atomically precise gold nanoclusters with a metal core of a uniform size of just 1-3 nm constitute an interesting class of nanomaterials with versatile possibilities for applications due to their size-dependent properties and modifiable ligand layers. The key to extending the usability of the clusters in applications is to understand the chemical bonding in the ligand layer as a function of cluster size and ligand structure. Previously, it has been shown that monodispersed gold nanoclusters, stabilized by meta-mercaptobenzoic acid (m-MBA or 3-MBA) ligands and with sizes of 68-144 gold atoms, show ambient stability. Here we show that a combination of nuclear magnetic resonance spectroscopy, UV-vis absorption, infrared spectroscopy, molecular dynamics simulations, and density functional theory calculations reveals a distinct chemistry in the ligand layer, absent in other known thiol-stabilized gold nanoclusters. Our results imply a low-symmetry C1 ligand layer of 3-MBA around the gold core of Au68 and Au144 and suggest that 3-MBA protects the metal core not only by the covalent S-Au bond formation but also via weak π-Au and O═C-OH···Au interactions. The π-Au and -OH···Au interactions have a strength of the order of a hydrogen bond and thus are dynamic in water at ambient temperature. The -OH···Au interaction was identified by a distinct carbonyl stretch frequency that is distinct for 3-MBA-protected gold clusters, but is missing in the previously studied Au102 (p-MBA)44 cluster. These thiol-gold interactions can be used to explain a remarkably low ligand density on the surface of the metal core of these clusters. Our results lay a foundation to understand functionalization of atomically precise ligand-stabilized gold nanoclusters via a route where weak ligand-metal interfacial interactions are sacrificed for covalent bonding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app