Add like
Add dislike
Add to saved papers

Predicting loop conformational ensembles.

Bioinformatics 2018 March 16
Motivation: Protein function is often facilitated by the existence of multiple stable conformations. Structure prediction algorithms need to be able to model these different conformations accurately and produce an ensemble of structures that represent a target's conformational diversity rather than just a single state. Here, we investigate whether current loop prediction algorithms are capable of this. We use the algorithms to predict the structures of loops with multiple experimentally determined conformations, and the structures of loops with only one conformation, and assess their ability to generate and select decoys that are close to any, or all, of the observed structures.

Results: We find that while loops with only one known conformation are predicted well, conformationally diverse loops are modelled poorly, and in most cases the predictions returned by the methods do not resemble any of the known conformers. Our results contradict the often-held assumption that multiple native conformations will be present in the decoy set, making the production of accurate conformational ensembles impossible, and hence indicating that current methodologies are not well suited to prediction of conformationally diverse, often functionally important protein regions.

Contact: [email protected].

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app