Add like
Add dislike
Add to saved papers

Depression following traumatic brain injury in mice is associated with down-regulation of hippocampal astrocyte glutamate transporters by thrombin.

Depression after traumatic brain injury (TBI) is common but the mechanisms by which TBI causes depression are unknown. TBI decreases glutamate transporters GLT-1 and GLAST and allows extravasation of thrombin. We examined the effects of thrombin on transporter expression in primary hippocampal astrocytes. Application of a PAR-1 agonist caused down-regulation of GLT-1, which was prevented by inhibition of Rho kinase (ROCK). To confirm these mechanisms in vivo, we subjected mice to closed-skull TBI. Thrombin activity in the hippocampus increased one day following TBI. Seven days following TBI, expression of GLT-1 and GLAST was reduced in the hippocampus, and this was prevented by administration of the PAR-1 antagonist SCH79797. Inhibition of ROCK attenuated the decrease in GLT-1, but not GLAST, after TBI. We measured changes in glutamate levels in the hippocampus seven days after TBI using an implanted biosensor. Stress-induced glutamate levels were significantly increased following TBI and this was attenuated by treatment with the ROCK inhibitor fasudil. We quantified depressive behavior following TBI and found that inhibition of PAR-1 or ROCK decreased these behaviors. These results identify a novel mechanism by which TBI results in down-regulation of astrocyte glutamate transporters and implicate astrocyte and glutamate transporter dysfunction in depression following TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app