Add like
Add dislike
Add to saved papers

Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain.

Nanomedicine 2017 December
AIM: Facile development of polysaccharides-based carrier system for efficient delivery of doxorubicin (DOX) to the brain.

METHODS: DOX was nanocomplexed with alginate (Alg) followed by incorporation into chitosan (Cs) nanomatrices. The resulting carriers were optimized to have a net positive charge improving their delivery across the blood-brain barrier. The optimum DOX-loaded nanosystem was targeted to brain tissue via loading into various nasal dosage forms.

RESULTS: The pH-dependent ionization of both DOX and Alg was found to have a significant effect on DOX entrapment efficiency which was improved from 4% at slightly acidic media to 85% using different pHs. The nasal dosage forms, especially the insert, delivered the loaded DOX mostly to the brain tissue with targeting efficiency reaching 480%.

CONCLUSION: New intranasal carrier system was developed with efficient targeting of DOX to the brain. The carrier has potential to be used for delivery of other drugs acting on CNS. Graphical abstract: [Formula: see text].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app