Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Unique Transformation from Graphene to Carbide on Re(0001) Induced by Strong Carbon-Metal Interaction.

During graphene growth on various transition metals in the periodic table, metal carbides always emerge to behave as complex intermediates. On VIII metals, metastable carbides usually evolve and then transform into graphene along the phase interfaces, and even no metal carbides can form on IB-IIB metals. In contrast, during graphene growth on group IVB-VIB metals, carbides are usually generated even before the evolution of graphene and stably exist throughout the whole growth process. However, for the remaining transition metals, e.g., group VIIB, located in between IVB-VIB and VIII, the interplay between graphene and carbide is still vague. Herein, on Re(0001) (VIIB), we have revealed a novel transition from graphene to metal carbide (reverse to that on VIII metals) for the first time. This transition experienced graphene decomposition, dissolution, and carbon segregation processes, as evidenced by scanning tunneling microscopy (STM) and on-site, variable-temperature low electron energy diffraction (LEED) characterizations. This work thus completes the picture about the interplay between graphene and carbide on/in transition metals in the periodic table, as well as discloses a new territory for the growth of carbon-related materials, especially the metal carbide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app