Add like
Add dislike
Add to saved papers

Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH.

β-Lactoglobulin fibrils could serve as a surface-active component and form adsorption layers at the air/water interface. In this study, the physical parameters related to the surface adsorption, foaming, and surface properties of β-lactoglobulin fibrils as a function of pH (2-8) were investigated. Results showed that an increase of pH from 2 to 5 led to a rise of the viscoelastic modulus of the surface adsorption layer and half-life time (t1/2 ) of foams, but it decreased foamability. When the pH was close to its isoelectric point (5.2), fibrils had the lowest electrostatic repulsion and entangled at the air/water interface resulting in a tightly packaged adsorption layer around bubbles to prevent coalescence and coarsening. When the pH (7-8) was higher than the pI of fibrils, the negatively charged β-lactoglobulin fibrils possessed good foamability (∼80%) and high foam stability (t1/2 ≈ 8 h) simultaneously even at low concentration (1 mg/mL). It demonstrated that β-lactoglobulin fibrils with negative charges presented a good foaming behavior and could be a potential new foaming agent in the food industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app