Add like
Add dislike
Add to saved papers

A fast and simple method to estimate relative, hyphal tensile-strength of filamentous fungi used to assess the effect of autophagy.

Fungal hyphal strength is an important phenotype which can have a profound impact on bioprocess behavior. Until now, there is not an efficient method which allows its characterization. Currently available methods are very time consuming, thus, compromising their applicability in strain selection and process development. To overcome this issue, a method for fast and easy, statistically verified quantification of relative hyphal tensile strength was developed. It involves off-line fragmentation in a high shear mixer followed by quantification of fragment size using laser diffraction. Particle size distribution (PSD) is determined, with analysis time on the order of minutes. Plots of PSD 90th percentile versus time allow estimation of the specific fragmentation rate. This novel method is demonstrated by estimating relative hyphal strength during growth in control conditions and rapamycin-induced autophagy for Aspergillus nidulans (parental strain) and a mutant strain (ΔAnatg8) lacking an important autophagy gene. Both strains were grown in shake flasks and relative hyphal tensile strength was compared. The mutant strain grown in control conditions appears to be weaker than the parental strain, suggesting that Anatg8 may play a role in other processes involving cell wall biosynthesis. Furthermore, rapamycin-induced autophagy resulted in apparently weaker cells even for the mutant strain. These findings confirm the utility of the developed method in strain selection and process development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app