Add like
Add dislike
Add to saved papers

Involvement of many chemotaxis sensors in negative chemotaxis to ethanol in Ralstonia pseudosolanacearum Ps29.

Microbiology 2017 November 15
Ralstonia pseudosolanacearum Ps29 showed repellent responses to alcohols including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,3-propanediol and prenol. R. pseudosolanacearum Ps29 possesses 22 putative chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). To identify a MCP involved in negative chemotaxis to ethanol, we measured ethanol chemotaxis of a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29. However, all the mutants showed repellent responses to ethanol comparable to that of the wild-type strain. We constructed a stepwise- and multiple-mcp gene deletion mutant collection of R. pseudosolanacearum Ps29. Analysis of the collection found that an 18-mcp-knockout mutant (strain POC18) failed to respond to ethanol. Complementation analysis using POC18 as the host strain found that introduction of mcpA, mcpT, mcp09, mcpM, mcp15 and mcp19 restored the ability of POC18 to respond to ethanol. However, unexpectedly, strain POC10II, harbouring unmarked deletions in 10 mcp genes including mcpA, mcpT, mcp09, mcpM, mcp15 and mcp19 showed repellent responses to ethanol comparable to that of wild-type Ps29. We hypothesised that multiple mcp mutations in POC18 led to a shortage of MCPs required for formation of functional chemoreceptor arrays. When pPS16 (encoding McpP involved in phosphate chemotaxis) was introduced into POC18, POC18(pPS16) did not respond to phosphate. This result supports the hypothesis. But, genetic analysis revealed that MCPs (Mcp07, Mcp13, Mcp20 and Mcp21) are not essential for ethanol chemotaxis. Thus, we conclude that many and unspecified MCPs are involved in negative chemotaxis to ethanol in R. pseudosolanacearum Ps29.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app