Add like
Add dislike
Add to saved papers

Discovery of new potent molecular entities able to inhibit mPGES-1.

mPGES-1, a glutathione-dependent membrane protein is involved in the last step of PGE2 production and has been well recognized as a strategic target for the development of anti-inflammatory and anti-cancer agents. It has been proven to selectively control the PGE2 levels induced by inflammatory stimuli, with neither affecting PGE2 constitutively produced, nor homeostatic prostanoids, so that its modulation can represent a better strategy to control PGE2 related disorders, compared to the use of the classical anti-inflammatory drugs, endowed with severe side effects. Despite the intensive research on the identification of potent mPGES-1 inhibitors as attractive candidates for drug development, none of the disclosed molecules, except for LY3023705, which recently entered clinical trials, are available for clinical use, therefore the discovery of new effective mPGES-1 inhibitors with increased drug-like properties are urgently needed. Continuing our work aimed at identifying new chemical platforms able to interact with this enzyme, here we describe the discovery of potent mPGES-1 modulators, featuring a 1-fluoro-2,4-dinitro-biphenyl-based scaffold, by processing and docking a small collection of synthetically accessible molecules, built around two main fragments, disclosed in our in silico screening. The top scoring hits obtained have been synthesized and tested, and five of the predicted compounds showed to potently inhibit mPGES-1 enzyme, without affecting COX enzymes activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app