Add like
Add dislike
Add to saved papers

Metabolic Endotoxemia-Activated Macrophages Promote Pancreatic β Cell Death via IFNβ-Xaf1 Pathway.

Metabolic endotoxemia has been implicated in the pathogenesis of type 2 diabetes. In addition to adipose tissue inflammation, inflammatory cell infiltration is also observed in islets, although its effect on islets is largely unknown. We hypothesized that macrophage infiltration into islets leads to impairment of α or β cell function, which ultimately act to exacerbate the pathophysiology of diabetes. Gene expression in a murine α cell line, αTC1, and β cell line, βTC6, was investigated by DNA microarray after co-culturing the cells with a murine macrophage cell line, RAW 264.7, in the presence or absence of bacterial endotoxin. Among the genes showing highly upregulated expression, genes specifically upregulated only in β cells were evaluated to determine the roles of the gene products on the cellular function of β cells. In both α and β cells, expression of type I interferon-responsive genes was highly upregulated upon endotoxin stimulation. Among these genes, expression of the X-linked inhibitor of apoptosis (Xiap)-associated factor 1 (Xaf1) gene, which is associated with the induction of apoptosis, was specifically enhanced in β cells by endotoxin stimulation. This upregulation appeared to be mediated by macrophage-derived interferon β (IFNβ), as endotoxin-stimulated macrophages produced higher amounts of IFNβ, and exogenous addition of IFNβ into βTC6 cultures resulted in increased Xaf1 protein production and cleaved caspase 3, which accelerated β-cell apoptosis. Macrophages activated by metabolic endotoxemia infiltrated into islets and produced IFNβ, which induced β-cell apoptosis by increasing the expression of Xaf1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app