JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DNA methylation and genetic variation of the angiotensin converting enzyme (ACE) in depression.

BACKGROUND: Depression is one of the most prevalent psychiatric disorders, and in older persons is associated with high levels of comorbidity and under-treatment. Dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis is consistently observed in the older population as well as depressed patients, with the angiotensin converting enzyme (ACE) a key regulator of the stress response. Epigenetic regulation of ACE may play an important role in HPA axis (dys)regulation.

OBJECTIVE: To investigate ACE promoter methylation as a biomarker of late-life depression, and its association with genetic variation and cortisol secretion.

METHOD: The longitudinal general population ESPRIT study is aimed at investigating psychiatric disorders in older persons (n=1863, average age=73). Depression was assessed using the Mini International Neuropsychiatric Interview according to DSM-IV criteria and the Centre for Epidemiologic Studies Depression Scale (CES-D). Genotype information for seven polymorphisms across the ACE gene was also available. Blood and saliva samples collected at baseline and used to extract DNA and measure cortisol, respectively. Sequenom MassARRAY was used to measure promoter DNA methylation of the ACE gene (n=552).

RESULTS: There was no evidence of an association between ACE promoter methylation and depression. However, there was evidence that ACE genetic variants influenced methylation, and modified the association between depression and methylation (Δ at various sites; -2.05% to 1.74%; p=0.019 to 0.039). Multivariate analyses were adjusted for participants' lifestyle, health and medical history. Independent of depression status, ACE methylation was inversely correlated with cortisol levels (r=-0.336, p=0.042).

CONCLUSION: This study provides evidence that associations between ACE methylation and depression are genotype-dependent, suggesting that the development of reliable depression biomarkers may need to consider methylation levels in combination with underlying genetic variation. ACE methylation may also be a suitable biomarker of cortisol and/or HPA axis activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app