Add like
Add dislike
Add to saved papers

The major cellulases CBH-1 and CBH-2 of Neurospora crassa rely on distinct ER cargo adaptors for efficient ER-exit.

Filamentous fungi are native secretors of lignocellulolytic enzymes and are used as protein-producing factories in the industrial biotechnology sector. Despite the importance of these organisms in industry, relatively little is known about the filamentous fungal secretory pathway or how it might be manipulated for improved protein production. Here, we use Neurospora crassa as a model filamentous fungus to interrogate the requirements for trafficking of cellulase enzymes from the endoplasmic reticulum to the Golgi. We characterized the localization and interaction properties of the p24 and ERV-29 cargo adaptors, as well as their role in cellulase enzyme trafficking. We find that the two most abundantly secreted cellulases, CBH-1 and CBH-2, depend on distinct ER cargo adaptors for efficient exit from the ER. CBH-1 depends on the p24 proteins, whereas CBH-2 depends on the N. crassa homolog of yeast Erv29p. This study provides a first step in characterizing distinct trafficking pathways of lignocellulolytic enzymes in filamentous fungi.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app