Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Understanding the Reactive Adsorption of H 2 S and CO 2 in Sodium-Exchanged Zeolites.

Purifying sour natural gas streams containing hydrogen sulfide and carbon dioxide has been a long-standing environmental and economic challenge. In the presence of cation-exchanged zeolites, these two acid gases can react to form carbonyl sulfide and water (H2 S+CO2 ⇌H2 O+COS), but this reaction is rarely accounted for. In this work, we carry out reactive first-principles Monte Carlo (RxFPMC) simulations for mixtures of H2 S and CO2 in all-silica and Na-exchanged forms of zeolite beta to understand the governing principles driving the enhanced conversion. The RxFPMC simulations show that the presence of Na+ cations can change the equilibrium constant by several orders of magnitude compared to the gas phase or in all-silica beta. The shift in the reaction equilibrium is caused by very strong interactions of H2 O with Na+ that reduce the reaction enthalpy by about 20 kJ mol-1 . The simulations also demonstrate that the siting of Al atoms in the framework plays an important role. The RxFPMC method presented here is applicable to any chemical conversion in any confined environment, where strong interactions of guest molecules with the host framework and high activation energies limit the use of other computational approaches to study reaction equilibria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app