Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dielectrophoresis-based multi-step nanowire assembly on a flexible superstrate.

Nanotechnology 2018 January 13
Nanowire assembly based on dielectrophoresis (DEP) could be a useful and efficient tool for fabricating nanowire-based devices. Although there have been extensive reports on the DEP nanowire assembly, the new approaches that make DEP more facile and affordable are still desirable. Herein, we present an approach using the reusable electrodes to assemble silver nanowires onto a removable, independent polyethylene terephthalate (PET) film. The PET film is placed on the reusable electrodes, and a sinusoidal AC voltage is applied to the electrodes to induce DEP force for nanowire assembly upon the flexible film. We explore the influences of voltage, frequency and film thickness on nanowire assembly and further realize the assembly of silver nanowire arrays. In addition, the induced electric field is rotated in two consecutive steps to assemble the rectangular mesh-like nanowire networks. This reusable and facile approach for DEP nanowire assembly could provide a low-cost, precise, rapid and convenient tool for applications in the fields of flexible electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app