Add like
Add dislike
Add to saved papers

Characterisation of flattening filter free (FFF) beam properties for initial beam set-up and routine QA, independent of flattened beams.

Flattening filter free (FFF) beams have reached widespread use for clinical treatment deliveries. The usual methods for FFF beam characterisation for their quality assurance (QA) require the use of associated conventional flattened beams (cFF). Methods for QA of FFF without the need to use associated cFF beams are presented and evaluated against current methods for both FFF and cFF beams. Inflection point normalisation is evaluated against conventional methods for the determination of field size and penumbra for field sizes from 3 cm  ×  3 cm to 40 cm  ×  40cm at depths from dmax to 20 cm in water for matched and unmatched FFF beams and for cFF beams. A method for measuring symmetry in the cross plane direction is suggested and evaluated as FFF beams are insensitive to symmetry changes in this direction. Methods for characterising beam energy are evaluated and the impact of beam energy on profile shape compared to that of cFF beams. In-plane symmetry can be measured, as can cFF beams, using observed changes in profile, whereas cross-plane symmetry can be measured by acquiring profiles at collimator angles 0 and 180. Beam energy and 'unflatness' can be measured as with cFF beams from observed shifts in profile with changing beam energy. Normalising the inflection points of FFF beams to 55% results in an equivalent penumbra and field size measurement within 0.5 mm of conventional methods with the exception of 40 cm  ×  40 cm fields at a depth of 20 cm. New proposed methods are presented that make it possible to independently carry out set up and QA measurements on beam energy, flatness, symmetry and field size of an FFF beam without the need to reference to an equivalent flattened beam of the same energy. The methods proposed can also be used to carry out this QA for flattened beams, resulting in universal definitions and methods for MV beams. This is presented for beams produced by an Elekta linear accelerator, but is anticipated to also apply to other manufacturers' beams.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app