Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

DOCK3-related neurodevelopmental syndrome: Biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia.

Dedicator of cytokinesis (DOCK) family are evolutionary conserved guanine nucleotide exchange factors (GEFs) for the Rho GTPases, Rac, and Cdc42. DOCK3 functions as a GEF for Rac1, and plays an important role in promoting neurite and axonal growth by stimulating actin dynamics and microtubule assembly pathways in the central nervous system. Here we report a boy with developmental delay, hypotonia, and ataxia due to biallelic DOCK3 deletion. Chromosomal single nucleotide polymorphism (SNP) microarray analysis detected a 170 kb homozygous deletion including exons 6-12 of the DOCK3 gene at 3p21.2. Symptoms of our proband resembles a phenotype of Dock3 knockout mice exhibiting sensorimotor impairments. Furthermore, our proband has clinical similarities with two siblings with compound heterozygous loss-of-function mutations of DOCK3 reported in [Helbig, Mroske, Moorthy, Sajan, and Velinov (); https://doi.org/10.1111/cge.12995]. Biallelic DOCK3 mutations cause a neurodevelopmental disorder characterized by unsteady gait, hypotonia, and developmental delay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app