Add like
Add dislike
Add to saved papers

Universal behaviour of the glass and the jamming transitions in finite dimensions for hard spheres.

Soft Matter 2017 November 30
We investigate the glass and the jamming transitions of hard spheres in finite dimensions d, through a revised cell theory, that combines the free volume and the Random First Order Theory (RFOT). Recent results show that in infinite dimension the ideal glass transition and jamming transitions are distinct, while based on our theory we argue that they indeed coincide for finite d. As a consequence, jamming results into a percolation transition described by RFOT, with a static length diverging with exponent ν = 2/d, which we verify through finite size scaling, and standard critical exponents α = 0, β = 0 and γ = 2 independent on d.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app