Add like
Add dislike
Add to saved papers

A solid phase-assisted approach for the facile synthesis of a highly water-soluble zirconium-89 chelator for radiopharmaceutical development.

Nuclear medicine has seen impressive growth in recent years. An important development in this field occurred through the application of new radionuclides, e.g., 89 Zr (t1/2 = 78.4 h, β+ 0.396 MeV), the physical properties of which allow the use of antibodies as biological vectors for specific cancer targeting in combination with high resolution imaging by positron emission tomography (PET). The most commonly used chelator for 89 Zr-based PET imaging is the hexadentate desferrioxamine (DFO) chelator. However, due to the instability of this complex, there has been a strong push towards the development of octadentate chelators. We report an ether derivative, oxoDFO*, resembling the motif of DFO with four hydroxamic acid groups for the binding of the radiometal and four ether linkages to increase the water solubility. Very importantly, the synthesis of this chelator follows a solid phase-assisted approach allowing for the development of an attractive synthetic methodology and widening the scope for the access to DFO-like chelators in highly efficient synthetic sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app