Add like
Add dislike
Add to saved papers

Analysis of Fluorine in Drinking Water by ICP-QMS/QMS with an Octupole Reaction Cell.

The analysis of fluorine was carried out by measuring BaF+ ions with an inductively coupled plasma tandem quadrupole mass spectrometer (ICP-QMS/QMS). After optimization, a radio frequency power of 1300 W was found to benefit for the production of BaF+ ions while suppressing the production of BaOH3 + ions. After optimization of the reaction cell gas, it was found that the best performance for measuring BaF+ could be achieved at a flow rate of O2 in the range from 0.65 to 0.75 mL min-1 . The signal intensity of BaF+ depended linearly on the concentration of Ba when it was not higher than 100 mg kg-1 . The co-existence of metallic cations, such as Na in the sample, might suppress the generation of BaF+ ions in the plasma, while anions might not cause such a kind of interferences. The background equivalent concentration (BEC) and the lower detection limit (LDL) of fluorine were 0.4 and 0.06 mg kg-1 , respectively, by adjusting the samples to a 10 mg kg-1 Ba matrix. The concentration of fluorine in a certified reference material (ERM-CA015a) was determined with the present method, for which the observed value was (1.36 ± 0.05)mg kg-1 , which agreed with the certified value (1.3 ± 0.1)mg kg-1 , where both values were shown as (mean value ± expanded uncertainty) with a coverage factor of (k = 2) for calculating the expanded uncertainty giving a level of confidence of approximately 95%. The present method was applied to the analysis of a tap water sample collected in the laboratory, for which the results of recovery tests gave a recovery around 100% with good reproducibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app