Add like
Add dislike
Add to saved papers

Estimation of Retention Time in GC/MS of Volatile Metabolites in Fragrant Rice Using Principle Components of Molecular Descriptors.

A quantitative structure-retention relationship (QSRR) study was applied for an estimation of retention times of secondary volatile metabolites in Thai jasmine rice. In this study, chemical components in rice seed were extracted using solvent extraction, then separated and identified by gas chromatography-mass spectrometry (GC-MS). A set of molecular descriptors was generated for these substances obtained from GC-MS analysis to numerically represent the molecular structure of such compounds. Principal component analysis (PCA) and principal component regression analysis (PCR) were used to model the retention times of these compounds as a function of the theoretically derived descriptors. The best fitted regression model was obtained with R-squared of 0.900. The informative chemical properties related to retention time were elucidated. The results of this study demonstrate clearly that the combination of molecular weight and autocorrelation functions of two dimensional interatomic distance, which are molecular polarizability, atom identity, sigma charge, sigma electronegativity and polarizability, can be considered as comprehensive factors for predicting the retention times of volatile compounds in rice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app