Add like
Add dislike
Add to saved papers

Amyloid toxicity is enhanced after pharmacological or genetic invalidation of the σ 1 receptor.

Behavioural Brain Research 2018 Februrary 27
The sigma-1 receptor (S1R) is a molecular chaperone which activity modulates several intracellular signals including calcium mobilization at mitochondria-associated endoplasmic reticulum membranes. S1R agonists are potent neuroprotectants against neurodegenerative insults and particularly in rodent models of Alzheimer's disease (AD). We here analyzed whether S1R inactivation modifies vulnerability to amyloid toxicity in AD models. Two strategies were used: (1) amyloid β[25-35] (Aβ25-35 ) peptide (1, 3, 9nmol) was injected intracerebroventricularly in mice treated repeatedly with the S1R antagonist NE-100 or in S1RKO mice, and (2) WT, APPSweInd , S1RKO, and APPSweInd /S1RKO mice were created and female littermates analyzed at 8 months of age. Learning deficits, oxidative stress, Bax level and BDNF content in the hippocampus were analyzed. Aβ25-35 induced learning impairment, oxidative stress, Bax induction and BDNF alteration at lower dose in NE-100-treated mice or S1RKO mice as compared to WT animals. The extent of learning deficits and biochemical alterations were also higher in APPSweInd /S1RKO mice as compared to WT, APPSweInd , and S1RKO animals. S1R inactivation or altered S1R expression augmented the pathological status in pharmacologic and genetic AD mouse models. These observations, in relation with the well-known protective effects of S1R agonists, are coherent with a role of signal amplifier in neurodegeneration and neuroprotection proposed for S1R in AD and related neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app