Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Disulfide-bond-mediated cross-linking of corneous beta-proteins in lepidosaurian epidermis.

Corneous beta-proteins (CBPs), formerly referred to as beta-keratins, are major protein components of the epidermis in lepidosaurian reptiles and are largely responsible for their material properties. These proteins have been suggested to form filaments of 3.4nm in thickness and to interact with themselves or with other proteins, including intermediate filament (IF) keratins. Here, we performed immunocytochemical labeling of CBPs in the epidermis of different lizards and snakes and investigated by immunoblotting analysis whether the reduction of disulfide bonds or protein oxidation affects the solubility and mobility of these CBPs. Immunogold labeling suggested that CBPs are partly co-localized with IF-keratins in differentiating and mature beta-cells. The chemical reduction of epidermal proteins from lizard and snake epidermis increased the abundance of CBP-immunoreactive bands in the size range of CBP monomers on Western blots. Conversely, in vitro oxidation of epidermal proteins reduced the abundance of putative CBP monomers. Some modifications in the IF-keratin range were also noted. These results strongly indicate that CBPs associate with IF-keratins and other proteins via disulfide bonds in the epidermis of lizards and snakes, which likely contributes to the resilience of the cornified beta- and alpha-layers of the lepidosaurian epidermis in live animals and after shedding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app