Add like
Add dislike
Add to saved papers

Giant Valley Splitting and Valley Polarized Plasmonics in Group V Transition-Metal Dichalcogenide Monolayers.

Two-dimensional group VI transition-metal dichalcogenides (TMDs) provide a promising platform to encode and manipulate quantum information in the valleytronics. However, the two valleys are energetically degenerate, protected by time-reversal symmetry (TRS). To lift this degeneracy, one needs to break the TRS by either applying an external magnetic field or using a magnetic rare-earth oxide substrate. Here, we predict a different strategy to achieve this goal. We propose that the ferromagnetic group V TMD monolayer, in which the TRS is intrinsically broken, can produce a larger valley and spin splitting. A polarized ZnS(0001) surface is also used as a substrate, which shifts the valleys to the low-energy regime (near the Fermi level). Moreover, by calculating its collective electronic excitation behaviors, we show that such a system hosts a giant valley polarized terahertz plasmonics. Our results demonstrate a new way to design and use valleytronic devices, which are both fundamentally and technologically significant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app