Add like
Add dislike
Add to saved papers

Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity.

In this work, a novel drug delivery system consisting of poly(ε-caprolactone) (PCL) electrospun fibers containing an ad-hoc-synthesized star polymer made up of a poly(amido-amine) (PAMAM) core and PCL branches (PAMAM-PCL) was developed. The latter system which was synthesized via the ring opening polymerization of ε-caprolactone, starting from a hydroxyl-terminated PAMAM dendrimer and characterized by means of 1 H NMR, IR and DSC, was found to be compatible with both the polymer matrix and a hydrophilic chemotherapeutic drug, doxorubicin (DOXO), the model drug used in this work. The preparation of the dendritic PCL star product with an average arm length of 2000g/mol was characterized using IR and 1 H NMR measurements. The prepared star polymer possessed a higher crystallinity and a lower melting temperature than that of the used linear PCL. Electrospun fibers were prepared starting from solutions containing the neat PCL as well as the PCL/PAMAM-PCL mixture. Electrospinning conditions were optimized in order to obtain defect free fibers, which was proven by the structural FE-SEM study. PAMAM moieties enhanced the hydrophilicity of the fibers, as proved by comparing the water absorption for the PCL/PAMAM-PCL fibers to that neat PCL fibers. The drug-loaded system PCL/PAMAM-PCL was prepared by directly introducing DOXO into the electrospinning solutions. The DOXO-loaded PCL/PAMAM-PCL showed a prolonged release of the drug with respect to the DOXO-loaded PCL fibers and elicited effective controlled toxicity over A431 epidermoid carcinoma, HeLa cervical cancer cells and drug resistant MCF-7 breast cancer cells. On the contrary, the drug-free PCL/PAMAM-PCL scaffold demonstrated no toxic effects on human dermal fibroblasts, suggesting the biocompatibility of the proposed system which can be used in cellular scaffold applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app